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NON-LINEAR STANDING WAVES OF AN ELASTIC PLATE FLOATING ON THE SURFACE 
OF A HEAVY LIQUID OF INFINITE DEPTH* 

Q.M. GLADUN and V.S. FEDOSENKO 

The problem of non-linear standing waves in an ideal incompressible 
liquid on whose surface an elastic isotropic plate floats is solved by a 
perturbation method. The case of bifurcation of the solution is investi- 
gated. The results of the research are discussed briefly in /l/. 

1. We consider a layer of ideal incompressible liquid occupying the lower half-space, on 
whose surface a thin elastic isotropic plate of thickness h floats. We investigate the plane 
motion of the liquid, periodic in the horizontal coordinate m1 (with period h) and the 
time t, (with period t). We direct the x1 axis along the middle level of the interfacial 
surface between the plate and the liquid and the z1 axis vertically upward. 

The problem is to determine the velocity potential 'p*, the ordinates of the interfacial 
surface between the plate and the liquid c* and the frequency of vibration fs = 2nlz. In 
dimensionless variables the problem has the form /2, 3/ 

(1.3) 

W) 

(1.5) 

Here E is the normal elastic modulus of the plate, v is Poisson's ratio, pl is the 
plate density, p is the density of the liquid k = 230% is the wave number, h is the wave- 
length, a is the linear wave amplitude, and e is a small parameter. The function P" (&) is 
also to be determined. 

We will seek the solution of the problem by a perturbation method. To do this, we expand 
the function cp (x,z, C) in a Taylor series in the neighbourhood of z = 0 and we write the 
non-linear boundary conditions (1.2) approximately up to terms of the order of es 

and we represent the unknowns in the form of power series in e: 

Using the usual method (see /2/, say) and omitting the intermediate calculations, we have 
to third-approximation accuracy 

'p* = --Ek-%, ices 3: sin te' -t EA cos 2x sin 2tP $- (1.6) 
E-~ (A, cos I sin 3te'-l- Aa cos 3.2 siu ieU + As cos 32 sin 31e3')] 

g* = Ek-l [COS x cos t + E (2s COS 22 COS”~ + (c - B) cos 2x) -- 

&2 (B, CDS 2 cos t + B, cos z cos.3t -I- R, cos 3x COB t i- 
3, eos 3x cos 3t)l 

0.7) 
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A = ~,y, N _ ,r (, I__ II) , Al = (3R y 1) (8% --- 1) -i- 15R -i- 39 
L56(R-1)(1-,-x) 

A =3(3ll- l)S-s(n-,-I) C 3(R -t l)(P - 1) + 7R + 3 
2 32 (H 1)(3S - --- 1) '1 _/~, J = 32 (R (P 2) - I) -1. 

B ,=i3,+~~+3x(h4 xc I 
II 32 ( I R) (I x) - -1. -?qcjTq’ CE 480 (IW 1) + 

- B2= 4 R 
B, = 

3 (H -f 3) 
64 (H -~ I) (1 -i-X) 3 16(1- H)(3S -7' 

K = 12&x,/~: (- 15DIk4 - - -- 
1 -C IIlk 

3xlk , P= %x,k 80DIk4 72Dlx,k5 
I + Dlk” 

s = 80Dlxlk” + 81 Z),kA -/- 1 
1 D,k4 1- 

D,=D/k3, xl--:x/k 

Starting from the approximate expression for the profile (1.7) and (1.8), a number of 

standing-wave singularities can be established on the interfacial surface between the plate 

and the fluid. 
lo. There are no fixed nodes. Indeed, the abscissae of the nodes are found from the 

equation c* (2, t, E) = 0. Let us represent E* (.z,t,&) in the form 

c* (& t, s) = &* (m, t, s) + &* (2, s) (1.9) 

Since ci* (x, n/2,&) = 0, 6,* is a component of the profile being straightened out at the 

times t = x (n + 1/2) (n = 0, 1, 2, . . .). The component &* is idependent of the time and is a 

constant perturbation that agrees with the non-linear wave profile at the times mentioned. 

It is interesting to note that such a component appears only in the fourth approximation when 

there is no plate present /4/. 

To determine the nodal points cl*, by confining ourselves to the first two terms of the 

expansion we have 

cos z + sii!i? cos 2.z cos t = 0 (1.10) 

where the factor cos t has been discarded, for whose zero value only tz* remains in the 

full wave. 

For E = 0, Eq.Cl.10) has the solution z,= n(2j - I)/2 (j = 1,x) in the segment [0,2n]. 
Let us seek the roots of (1.10) near this in the form of the series 

5j = X (2j - I)/2 + EUlj + EPUZf -t . . c (1.11) 

Substituting (1.11) into (l.lO), we find to first-approximation accuracy 

Xj z 7 (2j - I)/2 + (-I)‘& 2R COS t (1.12) 

It follows from (1.12) that the roots of (1.10) depend on time, i.e., there are fixed 

nodes for the component &*. Following /5/, we call the points under examination moving nodes, 

referring them to the full wave. By virtue of (1.9), we see that these nodes do not move 

along the horizontal but along the constant perturbation c,* near which the vibrations 
indeed occur. 

-2O. It can be shown that c,* = 0 for z= 0 and Z%=JC while ct* = 0 for t=o and 

t = n. The maximum amplitudes will be at the points: a) z-0 (crest), z=ll (trough) and 

for t = 0; b) I = 0 (trough), I = n (crest) and for t = n. 
3O. If B > O.(t3 < 0) the amplitude is greater (less) than the amplitude of the trough, 

the crest is narrower (wider) and the trough is wider (narrower). This property follows from 

(1.7) and (1.12). 
4O. Making the change of variable t = t’ + x12, we obtain that for t' = 0 the profile 

has the form 

5* = E2k-r (C - B) cos 2x 

Therefore, because of the arbitrariness of the initial time the wave profile is never 

straightened out in the general case. However, we note that for a definite value of the wave 
number k' the quantity C--B = 0. The value of k’ is the single positive root of the equation 

x1 - 15D,k3 - 14D,x,k4 = 0 

Below we present the results of calculations of the root k' for different values of the 
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plate thickness 

h, M 0.2 0.4 0.6 0.8 1.0 1.2 
iOlk’, at-1 368 232 117 146 126 111 

Therefore, a wavelength dependent on the initial parameters of the problem exists, such 

that the profile of the interfacial surface between the plate and the fluid can be straightened 
out at certain times. 

So. It follows from (1.8) that the vibration frequency can be both greater and less than 
the corresponding quantity in the linear problem. 

The properties 3O and So are associated with the fact that the equation l-R= 0 (of 
fifth degree in k) has one positive real root. The equation 2fP= 0 also has a single 

positive root. In the neighbourhoods of these roots the amplitudes of the non-linear approxi- 

mations significantly exceed the amplitude of the linear approximation. Since the amplitude 

of the first non-linear approximation in (1.6)-(1.8) should be at least one orderofmagnitude 

less than the amplitude of the linear approximation while the amplitude of the second non- 
linear term istwoorders smaller, then to determine the intervals of unsuitability of the 

solution obtained, numerical computations were performed. The computations show that, for 
example, for h=0.2 m at least one of the quantities IAI,IA,-A&A,I, IB+Cj, IB,+B,+B,+ 

413 IOIl is greater than four (unsuitablity of the solution for ~>0,1) at each point of the 

interval [0.10492;0.10716] U [0.13307;0.14023] (m-l) . 
It is interesting to note that for D1=O (cracked ice) 1-R>>, 2+P>O,i.e.,"resonance" 

wavelengths do not exist. 

We note that the calculation of each of the subsequent approximations of the solution of 

the problem by a perturbation method will be accompanied by the appearance of at least one 

resonance wavelength, i.e., we will have a set of resonance values of the wave number, each 
of which will satisfy the following equation for definite m and n: 

n (a’ - m’)D,%,k’ -I- (n! - m2)DIk’ + n (1 - m*)x,k + n - m2 = 0 (1.13) 

where m and n are simultaneously even or odd natural numbers and In, n > i. 
For m= n (1.13) has a single positive real root k,_,: 

[n (n2 + n + I)&-"' < k,_, < (nZ&-“4 (1.14) 

In the case of real parameters of the problem D1>O, consequently, it follows from the 

estimate (1.14) that the spectrum of resonance values of the wave number obtained from (1.13) 
for n = m = 2, 3... belongs to the interval (O,l), where the zero is the condensation point. 

We note that this spectrum does not agree with the whole set of resonance values of the wave 

number. The interest in the spectrum mentioned will become comprehensible later. Below we 
present the results of a calculation of the roots k, and k, of the equations I-R=O,Z+ 
P=O that yield the first two values of the spectrum 

IL, m 0.2 0.4 0.6 0.8 1.0 1.2 
10Pkl, m-l 1368 815 602 486 411 359 

10% m -1 106 632 467 377 319 278 

For resonance wavelengths as well as their neighbourhoods, additional investigations must 

obviously be carried out. 

2. We consider the case when k = k, is a root of the equation 1 -R = 0. We note that 

this equation is equivalent to the following 

mo, (k) = q, (nk) (2.1) 

for n=n=2, which is expressed in expanded form by (1.13). Here crO is the linear wave 
vibration frequency. For m = n this last equality is a special case of the synchronization 
condition known in non-linear optics /6/ 

for n +1 interacting waves when ki = k (i = 1,2,. ..,n). 

Since the eigenvalues pll and paz, equal to one another for k= k, as follows from (2.1), 

correspond to the eigenfunctions 

‘PJJ = f eos j&, j=19 2 

of the linear problem corresponding to (l.l)-(1.5), then the first (linear) approximation for 

cp is sought by the perturbation method in the form --cos LZ sin te' - b cos 2x sin 2tea’ for k = k,. 



Using the usudl scheme of the perturbation method to find each of the approximation for '[' cirlri 

P, we obtain one undetermined coefficient which is foundincalculations of the subsequer,t 

approximations. We determine the coefficient b by evaluating the second approximatior,. !%it.- 
ting the intermediate calculations, we have to the accuracy of the second approximation 

c** _ EIz-1 [cos z cos t + h cos 2.z cos 2t + E (A, cos P cos t + (2 .:q 

A, cm .z cos 3t + A:, eels 2x co5 2t + A, cos 3x cos t + 

AS cos 33 cos 3t + A6 cos 4xcos4t + A,cosr,z + A, cos 2x)] 

b 
U= ul= 4(li-x) 

b=+(sr, Al++ A,=-z 
16(1+N 

7+24x 
A,=+$& + ___ - 

3(7+12x) 
4(3+ 8%) 4(5+22X) 

(2.4) 

_$,Z-. 
3b 

A,=_ bZ b= 
2(5-k 12%) ’ 2(7+18x) ' A7= 2(9+26x) ' 

b= 

As= 2(1+x) 

Therefore, for k = k, bifurcation of the solution occurs: the existence of two waves of 

identical length h, pm %k;'. is possible, but with different vibrations frequencies, differing 

by an amount ?eo,, j csl j. Numerical calculations show that the absolute value of the second 

approximation for t = 0, t z z in the expression for Si- = s-%5+* does not exceed approxi- 

mately 0.3E, i.e., the general form of the wave profile% described by the first approximation. 

The figure shows graphs of 5~ at the times t-0, t=n 

5 for E : 0.1 (5, is the solid line, and c_ the dashed line). 

The change in <+ as a function of the plate thickness does not 
1 exceed 0.01 when 0.2 :< h.< 1.2. 

3. Solutions of (1.6)-(1.8) and (2.3), (2.4) of the problem 

0 in question were obtained above, where the former is valid out- 

side small neighbourhoods of the wave numbers k, and k, and 

the latter for k = k,. To find the solution in the neighbour- 

-1 hood of k = Is, we append small perturbations of the dimension- 

less parameters x and D, which depend on k: 

To determine the profile of the interfacial surface between the plate and the fluid as 

well as the vibrations frequency by the perturbation method, we find expressions analogous to 

(2.3) and (2.4), where the coefficients in these expressions dependon x0 and [I,. 

Therefore, bifurcation of the solution of the problem also occurs in a small neighbour- 

hood of Ii = k,. Computations show that for values of k sufficiently close to Ic, the wave 

profiles & at the times t = 0 and t = n are analogous in shape to the corresponding wave 

profiles corresponding to the solution (2.3); the shape of the profile of one wave (5_ for 

k > k,, 5, for k < k,) tends with distance from k, to the shape of the wave profiles 

described by the solution (1.7), the amplitude of the other wave (5, for 1~ > k, and <_ for 

k < k,) grows, while the profile at the times t = 0 and t =- X has a definite "two-hump" shape. 

The properties mentioned appear most clearly for small values of the plate thickness, for 

instance for h = 0.2 m, because as h decreases the intervals comprising the intervals of 

unsuitability of the solution of (1.6)-(1.8) expand while the resonance values of the wave 

number increase. 
-The calculations were performed for the following parameters of the problem: E = 3.10YN/m2, 

p = 1080 kg/m3, pl = 870 kg/m3 and Y = 0.34. 
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EXACT SOLITON SOLUTIONS OF THE GENERALIZED EVOLUTION EQUATION 
OF WAVE DYNAMICS* 

N.A. KUDRYASHOV 

A Backlund transformation is proposed for the generalized evolution equation of gas 
dynamics, by means of which exact soliton solutions of this equation are obtained. 

In recent years, a non-linear fourth-order equation has been used to describe a number 

of wave processes. In the general case, this takes the form 

(0.1) 

Here a, fl and v are constant coefficients, u (Z> t) is a function that characterizes the 

physical process: mixing, the thickness of a film, concentration, etc. 

With u#O, fi= y= 0 Eq.(O.l) is the Burgers equation, which, in the simplest case, models 

the formation of shock waves in gas dynamics /l/. Using a Cole-Hopf transformation /2, 3/ 

u, (3, t) = -2aaln F/as (0.2) 

the Burgers equation is transformed into a linear heat conduction equation with respect to 

the function F(s,t). When a=y=O,fi+O Eq.(O.l) is well-known as the Korteveg-de Vries (KdV) 

equation, which describes solitons (localized non-linear waves) /4/. 

Using the Miura transformation /5, 6/ 

11 (z, t) = 12fi@ln F/W (0.3) 

the KdV equation reduces to an equation for F(s,f) which has a quadratic form, from which 

Hirota /7/ found exact single-andmulti-soliton solutions of the KdV equation. 

Below, we will consider Eq.(O.l) with values of the coefficients a, b and y different 

from zero. 

1. The Backlund transformation for Eq.(C.l). We write the solution of (0.1) in 

the form of the following sum: 

u (z, t) = ff uj (2, t) Fj-3 (J, t) 
j=o 

(1.1) 

Substituting (1.1) into (0.1) and equating terms with the same powers of F (z,t) we get 

a series of equalities: 

u0 = --1ZOyF,3, u1 = -15fZxZ + 180yF,F,, (1.2) 
us = (15/76)@Vy - 16a)F, + 15pFzx - 6OyF,,, 

We can write the equation that contains the coefficient %l (I? t) and partial derivatives 

of F (r, t) (denoted by Ft. F,, F, etc.) in the form 

F,+u,F,+$+-7+,+&(&16a)F,,+ (1.3) 

5l3F,, - 15~Fxxm - q fiF:,F;' + 30yF,,F,,,F;’ - 

15yF:xF;a= 0 
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